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CHAPTER 1

INTRODUCTION

Since the last decade, study in autonomous UAV control system has shown sig-
nificant growth. The UAV structure that is selected in this thesis is a rigid body
with constant mass and has four symmetrical rotors. This structure is also known
as quadrotor. The quadrotor dynamics are highly nonlinear, hence a nonlinear
control method has to be applied in order to achieve stable autonomous system.
In this research, the development of nonlinear stabilizing controller, observer, and
adaptive control for autonomous quadrotor UAV are investigated. The objective
of the controller is to minimize the error between the desired predefined trajectory

and the actual trajectory of the UAV.

1.1 Motivation

UAYV is an aerial vehicle operated without human on board. It is operated ei-
ther remotely or autonomously. The idea of UAV extends the scope of mission

performed by the aerial vehicle without any risk to human life. UAV usually is



preferred in high risk missions such as military (espionage or invasion), fire fight-
ing, early detection of natural disasters, and many more. Not limited to only
high-risk missions, UAVs are also attractive for commercial or civil applications
such as geo-mapping, transportation of medical supplies to remote area, etc. By
utilizing the UAV, in addition to eliminating the risk of human life, it increases the
efficiency of time and money. The developments in miniaturization of the UAV
together with advances in mechatronics and microelectronics offer a wide poten-
tial for commercialization of small and inexpensive UAV. The quadrotor emerges
as a promising vehicle in the midst of many small UAVs present because of its
size, simplicity, and maneuverability.

The quadrotor is categorized as rotor-craft as opposed to fixed-wing aircraft.
It is propelled and lifted by the thrust generated by the rotors. Generally, the
quadrotor uses symmetrical blades (see Figure(1.1)). By changing its rotation
rate it achieves different motions. The quadrotor does not require the mechanism
to vary the rotor blades as they rotate, therefore the design is simpler compared to
the conventional helicopter. The four rotors use smaller rotor diameter compared
to the helicopter, resulting in less kinetic energy during flight which may reduce
the damage caused by the collision with other objects. With all these advantages,
many researchers are trying to develop the unmanned quadrotor for many appli-
cations. Specifically for the control engineer, fully autonomous quadrotor is an
interesting subject to be investigated. The absence of human operator requires so-

phisticated and reliable control system for indoor and outdoor applications. Many



Figure 1.1: Quadrotor (Image taken from www.cmuquadrotor.com)

obstacles can be seen when one tries to develop a control system for outdoor appli-
cations, such as wind and dust disturbances. Therefore, the problem of designing
the control system for autonomous quadrotor that can give good performance for
a wide application became a major issue.

In order to design a control system for the quadrotor, one needs to have equa-
tions that reflect the motion of the vehicle, either by modelling or using system
identification techniques. The dynamics of the quadrotor is usually described by
a set of differential equations derived using Euler-Lagrangian framework. It is
generally known that Euler Lagrange systems can be highly nonlinear for some
parameters that are influenced by the rotation matrix. This condition presents
a challenge in designing a control system, since the classical methods for linear
system are not adequate and may produce results that are far from satisfactory.

Another challenging property of the dynamics of the quadrotor is the under-

actuation. Quadrotor has six degree-of-freedom (DOF) and four actuations. A



system with total number of actuations less than the DOF is called underactuated
system. In underactuated system, control design problem becomes more complex.
The common method for solving the underactuated problem in the quadrotor is
by separating the control loop into two loops, the inner loop for attitude angles
control, and the outer loop for position control. In Zuo’s work [1], the underactu-
ated problem of the quadrotor is solved by determining the desired attitude angles
for the inner loop from the stable closed-outer-loop dynamics. By this method,
the attitude angles of the quadrotor are compatible with the position.

Several designs of nonlinear control for Euler Lagrange system, particularly for
the quadrotor have been proposed, such as sliding mode, feedback linearisation,
and backstepping. Each of these proposed controllers has weakness, for instance
in sliding mode control, the control law is discontinuous and fast switching (chat-
tering) is possible. For backstepping technique, it is not always easy to find a
suitable Lyapunov function and it is sensitive to parameter variation. In feedback
linearization, once the parameter of the system changes, there is a high probability
that the linearization becomes incorrect and creates unstable closed loop system.
Based on these issues, a nonlinear control for the quadrotor that overcomes all
the disadvantages coming from the above mentioned methods is developed.

In this thesis, the design of nonlinear control based on I&I technique for the
quadrotor UAV is proposed. The development of this technique was first pre-
sented in [2]. The method is developed based on system immersion and manifold

invariance. The main idea of 1&I method is to stabilize the system by immersing



the object’s dynamics into a target system with pre-specified desired behaviour.

The main features of 1&1 that motivate our interest are three folds

e [t does not require, in principle, the knowledge of Lyapunov function.

e Easier to solve, because it reduces the problem into subproblem.

e [t provides framework for nonlinear observer design and adaptive control

problem.

1.2 Problem Formulation and Contribution

In the development of the nonlinear trajectory tracking control for autonomous

quadrotor, several tasks are completed.

1. The design of stabilizing trajectory tracking controller based on I&I for

underactuated quadrotor.

2. Robustness analysis for 1&I stabilizing controller.

3. The design of backstepping controller for 1&I controller benchmark.

4. The design of global observer based on I&I for outer-loop of underactuated

quadrotor.

5. The design of classical Luenberger observer for 1&I observer benchmark.

6. The design of adaptive control based on I&I for underactuated quadrotor.

7. Analysis for 1&I adaptive controller.

5



8.

9.

The design of £; adaptive control for I&I adaptive control benchmark.

Another benchmark between 1&I adaptive control and £; adaptive control

on drilling system with delay.

1.3 Thesis Organization

The thesis is organized as the following.

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

contains introduction, motivation, problem formulation and objectives, and

thesis organization.

contains summary of the previous work on stabilizing controller, observer,
and adaptive control for the quadrotor UAV. It also contains the summary
of previous work on I&I based stabilizing controller, observer, and adaptive
control. In addition to the benchmarking, previous research on £; adaptive

control is summarized.

contains fundamental materials needed to understand the topic of the thesis.
It explains the preliminary background in stability, vector and functional

analysis and notations that are used throughout the thesis.

explains the kinematics, dynamics, properties and assumptions in the

quadrotor modelling.

proposes the design of UAV stabilizing controller for the purpose of tra-

jectory tracking of the quadrotor. Backstepping controller is designed for



Chapter 6

Chapter 7

Chapter 8

Chapter 9

comparison.

presents the development of 1&I based observer for inertial velocities esti-
mation in the outer loop. Classical Luenberger observer is proposed as the

benchmark study.

contains the design of 1&I adaptive control for unknown and uncertain pa-

rameters in the system. For comparison, £, adaptive control is designed.

proposes another benchmarking study for 1&I and £ adaptive control. The
controllers are examined in the directional drilling system which contains

internal delay.

concludes all the work in the thesis with suggestions for possible extension

for future work.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter summarizes several research activities in the quadrotor UAV control
area and research involving 1&I methodology. The first part of this literature
review contains the nonlinear stabilization of the quadrotor. The second part
presents the development of observer in the quadrotor UAV system, and recent
development in adaptive control of quadrotor is presented in the third part. Re-
view on I&I technique as the main methodology is presented in the fourth part

and £, adaptive control as the benchmarking study is reviewed in the last part.

2.2 Nonlinear Stabilization of Quadrotor

In the literature, many studies addressed the quadrotor path-tracking control
design. Several control strategies considering different techniques have been pro-

posed with various performance. Feedback linearization-based controller to track



a predefined trajectory has been investigated in [3]. [4] proposes proportional-
integral-derivative (PID)-based multi-channel control scheme and dynamic inver-
sion for a simplified dynamic model of quadrotor. In [5], a controller that compen-
sates the gyroscopic torques and Coriolis has been proposed and in [6] backstep-
ping method has been developed for stabilization of a quadrotor by tracking the
different positions and keeping the yaw angle constant while regulating the pitch
and roll angles. Sliding mode controller has been studied in [7] and [8] where in
the latter the controller is a combination of sliding mode and backstepping con-
trollers. In [9] trajectory tracking utilizing sliding mode control to overcome the
system uncertainties and external disturbances has been considered and a fuzzy
controller is employed to reduce the chattering and improve the performance of the
system. [10] proposed a control configuration composed of an inner loop and an
outer-loop, the study considered feedback linearization to develop the inner-loop
controller for attitude tracking. In [1], backstepping technique with command-

filtered compensation has been considered.

2.3 Observer Design of Quadrotor

In this section, several developments of observer for the quadrotor are presented.
Generally, the unknown states are estimated by the observer by utilizing infor-
mation gathered from input and output. In some cases, the unknown inertial
velocities and exogenous disturbances such as wind gust and additive parame-

ter uncertainties have to be estimated. The design of backstepping control and



feedback linearization working together with a sliding mode observer (SMO) for
a quadrotor UAV has been investigated in [11] and [12]. The SMO observes the
inertial translational velocities and estimates wind gust disturbance and uncer-
tainty. The objective of the controller is to minimize the tracking error in the
flight trajectory and yaw angle, and stabilize the pitch and roll angles in the pres-
ence of exogenous disturbances. The stabilizing backstepping controller design is
based on Lyapunov stability theorem.

In [13], nonlinear tracking control for underactuated quadrotor UAV in discrete
time is combined with an observer. It is shown that the separation principle
between controller and observer is satisfied. In[14], the time-varying reduced-order
Luenberger like observer is employed for quadrotor speed estimation. Asymptotic
stability of the estimation error is proved using Lyapunov approach and Barbalat
lemma. Another approach has been developed in [15], online neural network
(NN) is employed to study the complete dynamics of the quadrotor UAV. The
NN observer was also utilized for translational and angular velocities estimation.
Output feedback control is designed using information from position and attitude
angles.

Several different research approaches have been presented in the recent years,
but generally they have similar goals as those mentioned before. Using I&I method
[16], an asymptotic observer that estimates translational velocities of the quadro-

tor using the information gathered from the inertial position is proposed.

10



2.4 Adaptive Control Design of Quadrotor

Adaptive scheme is suitable when one is dealing with a system having unknown
parameters or a system in the presence of parameter uncertainties. For the quadro-
tor, parameter uncertainty is highly possible in the coefficient of translational
drag, rotational drag coefficients, propeller’s inertia and quadrotor’s inertia. If
the controller is not robust enough to absorb the uncertainty of the parameters,
the stability of the system can not be guaranteed. In this work, the 1&I adaptive
scheme is applied so that the quadrotor adapts with the uncertainty in rotational
drag coefficient, propeller’s inertia, and quadrotor’s inertia.

In [17], backstepping based adaptive scheme is utilized for an underactuated
quadrotor system with model parameter uncertainty. Based on Lyapunov stability
analysis, the proposed controller yields asymptotic tracking for inertial position
and yaw angle. In [18], adaptive dynamic programming (ADP) is applied in
quadrotor platform flying in a random environment and imposed to exogenous
disturbances and parameter uncertainties. In this scheme, the controller changes
its control action based on stimuli received in response to its actions by the critic
(cost function, reward).

Fuzzy-adaptive or neural-adaptive control developed in [19] offers the adapta-
tion scheme for arbitrary nonlinearities that is efficient. E-modification is a com-
mon method used to create robust adaptive control with respect to disturbances
but it is found to be unsuitable when applied to the quadrotor in simulation.

Alternate adaptive parameters in the adaptation scheme is proposed and it suc-

11



cessfully stabilizes the quadrotor in the simulation. Another work that utilized
adaptive scheme as the solution for stabilization was presented in [20].

Many studies in the design of adaptive control for quadrotor UAV are avail-
able in the literature. In this work, adaptive control based on I&I methodology

developed in [16] and [2] is proposed for trajectory tracking of quadrotor UAV.

2.5 Invariance and Immersion

Recently, 1&I for stabilization of nonlinear systems has been proposed by [2] and
has been summarized in [21]. Since then, several studies investigated the applica-
bility of the approach to different cases (see for example [22], [23], [24]). In [22], the
development of I&I control for underactuated cart-pendulum system is presented
and in [23] I&] control for an antagonistic joint with nonlinear mechanical stiffness
is considered. Stabilization of a synchronous generator with a controllable series
capacitor via 1&I has been studied in [25]. As stated previously, many control
techniques with relative success have been investigated to control the quadrotor.
The six-DOF rotor-craft airframe dynamics allow for both translational as well
as rotational motions. More importantly, it is a multi-input-multi-output sys-
tem with unknown linearities, underactuation, and a strong coupling between the
pitch, yaw and roll dynamics [26].

One of the popular methods for quadrotor is Backstepping control. The
Lyapunov-based design is not simple when compared to 1&I. In addition, the Lya-

punov stability condition is easily unsatisfied once there is a parameter change

12



in the system. Moreover, most of the studies ignored the drag forces and never
addressed the nonlinear actuator dynamics.

The main contribution of this thesis is the application of 1&I control approach
to design a controller and a observer for the quadrotor taking into considera-
tion the drag forces and the gyroscopic effect. Application of 1&I based adap-
tive control of four-rotor mini helicopter is presented in [27], in order to simplify
the complex multivariable parameter adaptation a parameterization with smaller
number uncertain coefficient is developed. In this work, a complete uncertain or
unknown parameters in inertia, propeller inertia, drag coefficient, and disturbance
are estimated.

Thel&lI control is applied to the inner loop attitude control, which produces a
closed loop stable linear system. A simple proportional-derivative (PD) control is
used in the outer loop to control the position and velocity. The approach adopted
is based on determining the correct attitude of the quadrotor with respect to
desired position as in [10], [1] and [28]. In addition, the control design has been

developed with an I&I observer.

2.6 L, Adaptive Control

L, adaptive control was first introduced in [29], [30], followed by series of articles,
and then summarized in [31]. The main attractive feature of £; adaptive control

is the decoupling between robustness and fast adaptation [32]. In [33], application

of £ adaptive control for safety-critical systems has been developed. A novel £4

13



adaptive control based on NN for autonomous aerial refueling autopilot has been
investigated in [34]. Nonlinear £; adaptive control for NASA AirSTAR flight test
vehicle has been presented in [35].

Research in autonomous vehicle employing £; adaptive control has been pre-
sented in [36], [37], and [38]. In [36], the design of £; adaptive control and flight
testing for indoor autonomous vehicles is presented. £, adaptive control has been
employed for the UAV for aero-biological sampling. In [38], the design of £; adap-
tive control for pitch and depth of underwater vehicle is proposed and tested. In
139], £, adaptive control is designed for quadrotor but only for longitudinal move-
ment. While in this work all 6-degree of freedom (DOF) dynamics of quadrotor
is considered.

The application of £; adaptive control for a system which contains internal

delay has been investigated in [40], with Explicit Force, Finitely Sharp, Zero Mass

(EFFSZM) directional drilling system as the object.

2.7 Conclusions

In this chapter, several research in the area of quadrotor control, observer, and
adaptive control have been reviewed. Research employing the 1&I methodology

and £, adaptive control concept has been summarized.
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CHAPTER 3

PRELIMINARIES

3.1 Introduction

This chapter presents the mathematical and system analysis background necessary
for all theoretical developments and simulation in this thesis. In section 3.2, the
notation that is used throughout the thesis is presented. Section 3.3 covers the
fundamentals in vector and matrix norm. Lyapunov stability theory is presented
in section 3.4, and invariant manifold and system immersion are covered in section
3.5. Nonlinear system parametrization and projection operator are covered in

section 3.6 and 3.7, respectively.

3.2 Notations

Throughout the thesis, the variables in bold typing denote vector or matrix vari-
ables, see for example Table (3.1). The "' denotes the vector/matrix trans-

position. The ”||.||” denotes the norm operator, and ”£” denotes the Lebesgue
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Vector/Matrix | x |y | Q| ¢ | A
Scalar x Q

<

Table 3.1: Vector/Matrix Notation

space.

3.3 Vector and Matrix Norm

Definition 3.1. The norm ||.|| of a vector or a matrix, e.g x, y, is a real-valued

function defined in the vector or matrix space, satisfying the following properties
L. ||x]] >0if x # 0, and ||x]| =0 < x = 0.
2. [x+yll < [+ llyll
B[l = [Alllxll,  AeR.

It is clear that in Definition 3.1 the norm is not uniquely defined. The next

definition introduces the most commonly used norms

Definition 3.2. For 1 < p < 0o, the p-norm of a vector x € R™ is defined as

m 1/p
Ixll, £ (Z |LIJ¢V’> (3.1)

i=1

hence

Il £ fa] (3.2)
i—1
IIx|]2 £v/xTx (3.3)
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The oco-norm of a vector x € R™ is defined as

ey ..
Ielloo = max x| (3:4)

Throughout the thesis, if the type of the norm is not stated, the 2-norm is used.

Definition 3.3. The £,-norm of piecewise-continuous integrable functions f :

0, +00] — R™ with bounded £,-norm is defined as

£, & ( / °°<||f<7>|rp>pd7) Vs 12p<s (35)

The L,.-norm of piecewise-continuous integrable functions f : [0, +oc| — R"™ with

bounded £.,-norm is defined as

.. £ o {suplf(r)] | < o0 (36

? >0

3.4 Lyapunov Stability Theory

This section recalls several fundamental results of Lyapunov stability theory. Con-

sider the nonlinear autonomous system given by the following
x =f(x), x(0)=xg (3.7)

where x € R" is the state, and f(x) : R® — R" is a locally Lipshictz nonlinearity.

Before we proceed with the stability theory, consider the following definitions that
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is useful in selecting the Lyapunov function.

Definition 3.4 (Symmetric Matrix). The matrix M € R™™" is symmetric if

M=MT

Definition 3.5. The following criteria are defined for the matrix M € R"*".

1. M is positive definite if

x Mx >0, VxeR"—{0}, x'Mx=0, foox=0 (3.8)

2. M is positive semi-definite if

x'Mx >0, VxeR" (3.9)

3. M is negative definite if

x'Mx <0, VxeR"—{0}, x'Mx =0, forx=0 (3.10)

4. M is negative semi-definite if

x ' Mx <0, VxeR" (3.11)

Assume that the nonlinear system (3.7) has an equilibrium at the origin, i.e x = 0.

The following stability theorem is presented.
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Theorem 3.1 (Lyapunov Stability Theorem) Let V : D — R be a positive

definite continuously differentiable function called Lyapunov function/candidate.
If

1. V(0)=0

2. V(x)>0, YeeD-{0}

3. V(x) <0, YaeD-— {0}

then the origin is Lyapunov stable. In addition, if

V(x)<0, YeeD-{0} (3.12)

then the origin is asymptotically stable. Moreover, if

V(x) =00 as ||x|] = o0 (3.13)

then the origin is globally asymptotically stable.

Definition 3.6 (Hurwitz Matrix). The matrix A is Hurwitz if it is a stable

matrix, i.e each eigenvalue has a negative real part.

Lemma 3.1 (Lyapunov Equation) Given the arbitrary symmetric and posi-
tive definite matriz Q = Q' > 0, if the matriz A is Hurwitz, there exists a unique

symmetric and positive definite matric P =P T > 0 satisfying the following Lya-
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punov equation

AP +PA=-Q

Proof: Proof can be seen in standard nonlinear control book.

(3.14)

3.5 Invariant Manifolds and System Immersion

For the fundamentals of I&I methodology, the definition of invariant manifold [41]

and system immersion [42] are presented here.

Consider an unforced system given by the following

where x € R® and y € R™

Consider now the following target system

£ =a(¢)
¢ =B(&)

where £ € R? (p <n)and ( € R™

(3.15)

(3.16)

(3.17)

(3.18)

Definition 3.7. For smooth z(x), the manifold M = {x € R" | z(x) = 0} is

20



called invariant manifold for (3.15) if

z(x(0)) =0=z(x(t)) =0 Vt>0 (3.19)

Definition 3.8. The system (3.17)-(3.18) is called to be immersed into system
(3.15)-(3.18), if there exists a smooth mapping = : R? — R™ that satisfies a
restricted initial conditions x(0) = w(&(0)), and B(&) # B(&2) = h(w(&)) #

h(m(&)) such that

f(m(&) = ;a(f), VEER? (3.20)

3.6 Nonlinear Systems Parametrization

This section presents a lemma needed when dealing with £, adaptive control for
nonlinear system. For the nonlinear map f(t,x(t)) : [0, 00] x R® — R, suppose

the following assumptions hold

Assumption 3.1 (Uniform boundedness of f(t,x(t))). 3 B > 0 such that
[f(t.x(8)] < B, Vi=0 (3.21)
Assumption 3.2 (Semiglobal uniform boundedness of partial derivatives).

for 0 > 0, 3 dy,(0) > 0 and dy,(0) > 0 independent of time, such that for arbitrary
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||x||co < 0, the following holds

of (t,x)

8f (t,x) . ,

< dy,(0) (3.22)

Based on these assumptions, two time-varying parameters are obtained from the
nonlinear function f(t,x(t)) using ||x||o as a regressor. The next lemma proves

this statement.

Lemma 3.2 (see [43]) Let x(t) be a continuous and (piecewise)-differentiable
function of t fort > 0. If ||x;|lz.. < p and ||X;||z.. < d, for 7 > 0, where p and
d, are some positive constants, then 3 continuous 0(t) and o with (piecewise)-

continuous derivative, such that ¥t € |0, 7]

ft,x(t) = 0(t)[[x]loc + o (t) (3.23)

where

0()] < 0,y 10(1)] < do,

o) < 0w, |o(t)] < do (3.24)

with 0, = dg,, op 2 B+ ¢, in which € > 0 is an arbitrary constant, and dy, d, are

computable bounds.

Proof: For proof see [31]. |
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3.7 Projection Operator

In adaptive control, parameter drift usually exists in the adaptation scheme. Here,
one tool which prevents parameter drifting is presented. This tool is called pro-

jection operator.

Definition 3.9 (see [44]). Consider the following smooth convex function

0+ 1070 — 07
(e ¥ 3002 Umax ¢ opn R (3.25)

max

f(8)=

where 0., is the norm bound of vector 0, ¢ is the projection tolerance, and the

smooth boundary for the convex compact set is given by

Q. 2{0cRf()<c}, 0<c<1 (3.26)

The projection operator is given by

y if f(0)<0

Proj(,y) = y if f(8)>0 and VfTy<o0 (3.27)

y_v_f<v_f7y> if f(0)>0 and Vf'y<0

Property 3.1 (see [44]). For vectorsy € R™, 6* € 2y C ©; C R", and 0 € Q;,

the following property holds

(0 —6")" (Proj(0,y) —y) <0 (3.28)
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3.8 Conclusions

In this chapter, several basic definitions and preliminaries used in the thesis were

covered. Next chapter will cover the modelling of the quadrotor UAV.
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CHAPTER 4

MODELLING OF THE QUADROTOR UAV

4.1 Introduction

This chapter presents the modelling of the quadrotor UAV. In section 4.2, the
introduction on basic concepts of quadrotor is presented. Section 4.3 introduces
the derivation of the nonlinear equations of motion of the quadrotor. In this

section the physical parameters used in the dynamics are also presented.

4.2 The Basic Concepts of a Quadrotor

A quadrotor is a six-DOF rigid body aerial vehicle, therefore the six different
motions of quadrotor are defined. The first three motions of quadrotor are related
to the translational motion, and the remaining are the rotational motions. In
translational motions, the quadrotor is able to move forward/backward, lateral
and vertical. In rotational motion the quadrotor has roll, pitch and yaw motion.

The quadrotor has four propellers, hence the combinations of them have to be
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selected to represent the basic movement. The four possible basic movements of

the quadrotor are defined in the following

1. Throttle 2 u (Newton). By increasing or decreasing all the propeller speeds
by the same amount, the throttle (u) is generated, it generates a vertical

force with respect to (w.r.t) the body frame.

2. Roll £ 7, (Newton.meter). This command is produced by increasing (de-
creasing) the right propeller and decreasing (increasing) the left propeller at
the same time. It provides the torque 7, w.r.t the z-axis in the body frame.

This torque creates roll motion in the quadrotor.

3. Pitch £ 7, (Newton.meter). This command is provided in similar way as
the roll motion, it is produced by increasing (decreasing) the front propeller
and decreasing (increasing) the rear propeller at the same time. This way,
the torque 7, w.r.t the y-axis in the body frame is generated. This torque

creates pitch motion in the quadrotor.

4. Yaw = 7, (Newton.meter). The fact that the front-rear and right-left pro-
pellers are rotated in different directions, when the speed of the front-rear
propellers is increased (decrease) and the speed of the right-left propellers
is decreased (increase), the yaw motion is achieved. It generates a torque 7,

w.r.t to the z-axis in the body frame.

The analysis of the motion in 6-DOF requires the use of two coordinate frames

-the body-fixed frame and the inertial (earth) frame. As such, the position and
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orientation are expressed with respect to the inertial frame and both linear and
angular velocities are described w.r.t the body frame. These two coordinate frames

are illustrated in Figure (4.1)

vertical forward
Vyaw o h 4
. ~ ¢ roll
fa
dn_ -
£ lateral

\
\
\

X
Earth/Inertial Frame

Figure 4.1: Body-Fixed and Earth Reference Frame

The general motion of a quadrotor in 6 DOF can be described by the following

vectors

n-= [/’717 772]T ™ = [I7 Y, Z]T e = [¢ ‘97 ¢]T

v = [Vh VQ]T Vv = {/LL, v, w}—l— Vy = [p/ q, 7.]T (41)

where 7 is composed of the position vector, 1, representing forward (), lateral (y),
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and vertical (z) motion respectively, and the orientation vector, 1y representing
roll (¢), pitch (0), and yaw (1)) motion respectively. The velocity vector v is
composed of the linear velocity vector , v, and angular velocity vector, v,. The
dynamic coupling between the inertial frame and the body frame is given by a

velocity transformation

N = Ji(m2)vs, v; = 37 (m2)n; (4.2)

where J;(m2), i = 1,2 is the transformation matrix that is function of the Euler
angles. The transformation matrix relating the translational velocity in the body

frame to the translational velocity in the inertial frame is given by

cosycos) —sinwcosp+ cospsinfsing  sin sin ¢ + cos cos ¢psin O

Ji(n2) = sinycosf cosycoso+singsinfsiny  —cosysing + sin cos psin b

—sin 6 cos 0 sin ¢ cos ¢ cos 0

(4.3)

and has the following property

I (me) =3 (n2) (4.4)

The body fixed angular velocity vector v5 and the Euler rate vector 15 are related

through a transformation matrix Jo(ny) given by
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1 singtanf cos¢tan0

Ja(m2) = |0 cos ¢ —sin ¢ (4.5)
0 cos ¢ cos ¢
L cos ) cosl |

4.3 Equations of Motion

In the development of the equations of motion of the quadrotor UAV, the following

assumptions are observed
Assumption 4.1.
1. The structure of the quadrotor is rigid.
2. The structure of the quadrotor is symmetrical.
3. The Centre of Gravity (CoG) is coincident with the body fixed frame
4. The propellers are rigid.

5. The body principal axes of inertia and the axes of the body frame are as-

sumed to be coincident. So, the inertia matrix Iy is diagonal.

6. The drag terms are assumed to obey Stoke’s Law, hence the translational

(rotational) drag is proportional to the translational (angular) velocity.

Lagrangian for the generalized coordinate with Ti,ans (kinetic energy for the

translational motion), Ty ( kinetic energy of the orientation), and U(potential
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energy), is given by the following

_ 1o 1.
L(qv q) - 7—Icrans + Trot -U = §7n171r771 + 5";177172 — mgz (46)

where I, is given by the following

I.. 0 O
L= "Iy, u=1|0 1, 0 (4.7)
0 0 I.

The Euler-Lagrangian equation w.r.t the translational motion is given by

d oL oL

4ok 9% _p 48
o om (48)

where F' is the force responsible for the translational motion. The Euler-

Lagrangian equation w.r.t the rotational motion is given by

where 7 is the torque responsible for the rotational motion. The drag terms are
represented by notations k, for the rotational drag, and k; for the translational

drag. Using equation (4.8) and involving drag term k;, the translational dynamics
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of the quadrotor is conveniently expressed as

T = —gze + J1(M2) —2e — —m (4.10)
m m

where z. = [0, 0, 1]". The main thrust force u generated by the four propellers

is given by

u=fi+ fot+fat+fa (4.11)

where f;’s are the upward lifting forces generated by each rotor and are given
by f; = k;Q2, where k;(i = 1,...,4), are positive constant and €;’s are the an-
gular speeds of the motors respectively. As seen in equation (4.10), the three
translational motion of the quadrotor can be controlled only by one input w, this
structure is called an underactuated system. Mathematically, the following defi-
nition of underactuated mechanical systems is suitable for this case, it is adapted

from [45][46].

Definition 4.1 (Underactuated System). Consider an affine mechanical sys-

tem described by

q="f(q,q) + G(q)u (4.12)

where q is a vector of generalized coordinates, f is the vector of the dynamics of

the system, G is the input matrix, and u is the vector of control inputs. System
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4.12 is called an underactuated system if

rank(G) < dim(q) (4.13)

From this definition, the inputs can not instantaneously set the acceleration in
all directions of the configuration space. Using definition 4.1, if equation (4.10) is
rewritten in the form of (4.12), the rank of input matrix is found to be less than
the number of the states, hence it is underactuated.

Utilizing equation (4.9) and involving drag term k.., the rotational motion of

the quadrotor on the body frame is given by

I)Q = IK/[l(—(I/Q X IMVQ) — ]R(I/Q X ZG)Q - ]{ZTVQ + ’T) (414)

where Iy = diag(7,, I, I,) is the total inertia of the quadrotor, I is the propeller
inertia, x represents the vector cross product, £, is the rotational drag coefficient
which is proportional to the angular velocity, T = [7,, 7,, 7-|" is the torque acting
on the body responsible for rotational movements, and €2 = € — Qy + Q3 — Q4.
The relationship between the forces generated by the propellers and the force
and torques acting around the body is given by the equation (4.15 ), where [ is
the distance from the motor to the center of mass, and d is ratio between drag

and thrust coefficient of the blade,
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7 0o 1 0 —1||nf

T Tq [0 -0 0 fo
_ _ (4.15)

MJ T d —d d —d || f

u 11 1 1 14

The quadrotor model used in this thesis has parameters as mentioned in Table

(4.1), these parameters are obtained from the previous work presented in [47].

Mass m | 0.52 kg
Gravity Acceleration g |9.8m/s?
Translational Drag Coefficient ky | 0.95
Rotational Drag Coeflicient k. | 0.105

Ratio Between Drag and Thrust Coefficient of the Blade | d | 7.5¢ 7 kg.m?
Inertia Coefficient on x-axis I | 0.0069 kg.m?
Inertia Coefficient on y-axis I, | 0.0069 kg.m?
Inertia Coefficient on z-axis I.. | 0.0129 kg.m?
Arm Length [ 0.205 m
Propeller Inertia Ir | 3.36e7° kg.m?

Table 4.1: Quadrotor’s physical parameters

4.4 Conclusions

This chapter covers the basic concepts and modelling of the quadrotor. This

model will be used in the development of the controller in the next chapters.
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CHAPTER 5

&1 STABILIZING CONTROLLER

5.1 Introduction

The I&I method for stabilization of nonlinear systems was first introduced by
Astolfi in 2003 [2]. The idea of I&I method is based on the system immersion and
manifold invariance concepts. The approach of 1&I is applicable for stabilization
of nonlinear system, design of nonlinear observer and adaptive control. In this
chapter, the I&I stabilization problem is introduced and the backstepping control

is used for the benchmarking.

5.1.1 1I&I Stabilization

For the I&I stabilization, the objective of the controller is to stabilize the system
by immersing the plant dynamics into a target dynamic with a desired behaviour.
The major result of 1&I stabilization method is summarized in the following the-

orermal.
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Theorem 5.1 (See [2]) Consider the system

x = f(x) + g(x)u (5.1)

with state x € R™ and control u € R™, with an equilibrium point x, € R™ to be

stabilized. Let p < n and assume we can find mappings

a:RF-SRY, w:RF—-R" c¢:R —R™

¢ R" 5 R"P o R* — R*(P) (5.2)

such that the following hold.

H1. (Target system) The system

£=alf) (5.3)

with state & € RP, has an asymptotically stable equilibrium at &, € RP and

X, = m(&).

H2. (Immersion condition). For all £ € R?
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H3. (Implicit manifold). The set identity

{x eR"¢(x) =0} = {x e R"|x = w(&) for some € € RP} (5.5)

holds.

H/. (Manifold attractivity and trajectory boundedness). All trajectories of the

system

i 92 () + g(x)eb(x.2)) (5.6)
%= £(x) + 80P (x,7) (5.7)

are bounded and satisfy

lim z(t) = 0 (5.8)

t—o0

Then x, is an asymptotically equilibrium of the closed loop system

x = f(x) + g(x)1h(x, $(x))

Proof: For the proof readers can refer to [2]. |
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5.2 Quadrotor Trajectory Tracking Control

As mentioned earlier, the quadrotor is categorized as an underactuated system.
In order to solve the underactuated problem, a two-loop controller is introduced.
In the outer loop, translational dynamics are controlled and the desired attitude
(¢, 0,1) is extracted and fed to the inner loop. PD tracking control is utilized as
the outer loop controller since the dynamics are linear in terms of parameters and
a predefined flight trajectory in the inertial frame is used as the reference for the
tracking control.

To track the desired attitude produced by the the outer loop, the I&I technique
is implemented in the inner loop. The results of the inner loop tracking control are
used by the outer loop to govern the movements of the quadrotor in the inertial
coordinates. The complete structure of the controller can be seen in Figure (5.1).

Under 1&I control, the equivalent closed loop system is linear.

Tq ba Tp ¢ T
Yd 04 Tq 0 y
Zd wd Tr ¢ 2
PD | > Inner | _|Rotationall _ Translational|l _
Control Dynamics Dynamics
u

Figure 5.1: Control Structure of Quadrotor
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5.2.1 Attitude Control Design: Invariance and Immersion

The objective of the inner loop is to achieve zero error between desired attitude
provided by the outer loop and actual attitude measured by the sensors. The
dynamics of the quadrotor in the inner loop are the angular velocities on the body
frame, therefore, the rotation matrix Jo(72) needs to be applied to transform the
attitude in the inertial frame to the angular velocity in the body frame. One
should note that the system is fully actuated w.r.t attitude dynamics.

From equation (4.14), the state space representation of the rotational dynamics

can be expressed as

ve= |4 | =F) +GT (5.9)

The angular body velocity vector v, = [p,¢,7]" cannot be integrated directly to

obtain actual angular coordinates. This is due to the fact that < ft VQ(S)dS) does
0

not have any physical interpretation. For this reason, we introduce virtual state

(xl = f VQ(S)dS) for 1&I control design purpose, such that the complete state

0

equation for the rotational dynamics becomes

}.(2 - 1)2 == F(VQ) + Gt = F(Xg) + Gt (510)
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Using equation (5.10), for a smooth reference signal, the following body angular

velocity error vectors are defined

€ = X1 —Xy14, € =X;—Xig=Xy—X|q =€, € =Xy Xy (5.11)

From equation (5.11), the error dynamics of the quadrotor body angular velocity

are

é1:e2

é2 = F(Xg) + Gt — )..Cld (512)

In order to apply the 1&I controller, H1-H4 conditions of theorem (5.1) need to

be verified.

(H1) (Target system). The key idea is to immerse a one-dimensional system into
a two-dimensional one. Thus, we define the global asymptotic stable target

dynamic vector as

é = —u€ (5.13)

with ¢ > 0, and £ € R.

(H2) (Immersion condition). By fixing m1(€) = €, equation (5.4) becomes

mo(§) = —pé (5.14)
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(H3) (Implicit manifold). The manifold e = 7 (&) can be implicitly described by

M ={ecR|p(e) =0}, with

P(e) = ey — my(§) = ey + e (5.15)

(H4) (Manifold attractivity and trajectory boundedness). The off-the-manifold

coordinates are z = ¢(e) and straightforward calculations show that

,_ 99le) _ {ékb(e) a¢(e)} é

N ot N 8e1 8e2

€

= ueq + F(XQ) + G’t/)(e, Z) — kld (516)

where (e, z) is the actual controller that is applied. The desired off-the-
manifold dynamics can be assigned arbitrarily, for instance fix it to z = —~z,

with v > 0. This yields
—vz = j1es + F(x2) + Gp(e, z) — X4 (5.17)
The controller design is completed by choosing

P(e,z) = (GTG) G (—vyz — F(xy) — pey + %14) (5.18)
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This yields the following closed loop dynamics

Z — — Y%
€1 = €9
éQ = F(Xg) + G¢(e, Z) — ild (519)

5.2.2 Attitude Control Design: Backstepping

This section presents the derivation of the backstepping controller for benchmark-
ing purpose. Inspired by Zuo’s work [1] and taking into account the rotational
drag terms, the attitude control of the quadrotor based on the backstepping tech-
nique is designed. The detail of the backstepping technique can be found in [48].

Defining the dynamic error as

Zi =1y — 1My

22 = V9 — Vyq (520)

Select the Lyapunov candidate as

1

Vl(z1) = 9

yAVA (5.21)
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Deriving the selected Lyapunov candidate along the trajectory of (5.20) gives

Vi(Z1) = Z{ Z1 = Z] (J5(n2)v2 — 12d) (5.22)

If Jo(ms) is invertible, v, can be seen as a virtual control signal vy, and can be

selected to satisfy Vi(Z) < 0 with

Vo, = 32(772)71(7'7% -17Zy) (5.23)

where vy, is the desired angular velocity and I'; is a positive definite matrix.
To have a good numerical result, computation of the derivative of v, has to be
avoided, hence the first-order command filter is introduced to track the desired

angular velocity vy,

I)gd = —T(l/gd — I/Qv) (524)

The time constant matrix T = diag(t;, t,t3) > 0 should be as large as possible
to achieve fast tracking. To compensate the error in the tracking, a new vector &

is introduced and its dynamics is given by

€ = —F1€ + JQ(T]Q)(VQd — U2v) (525)
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The Euler angles tracking errors are then redefined as
Zy=Z,—e=m—1N—¢€ (5.26)
Let candidate compound Lyapunov function

_ lore 1
VoZy,Zy) = ~Z]Z1 + ~Z) 7y (5.27)
2 2

Taking the time derivative of V,(Z1, Z,) along the trajectory of (5.20) and (4.14)

yields

Vo(Z0. o) = 212, + 737
= ZlT[JQ(m)VQ — Moa + e — Jo(na)(Vog — v2y)] + Z;[If/f(—(w + Invs)
— Ip(vy X 2.)Q) — kyvo + T — Uy
= —Z{T\Zy + Zy I (—(va + Iuw) — Tr(vo X 2)Q — kyvg + T — Uy

+J3 (m2)Z)] (5.28)
If the control input 7 is selected to be

T =(vy x Iywy) + Ip(vy X 2)Q + kevy — InTreg + InT IS (12) 724

— InTI; ' (me)T1(n2 — m2a) — Ind T (1m2) (M2 — Moa — €) — TuTa (v — 19y)

(5.29)

43



For T'y > 0, the VQ(Zl, Z,) satisfies

%(Zl, Zg) = _ZII‘lZl — Z;FQZQ <0 (530)

From equation 5.30, the tracking errors Z; and Z, converge to zero asymptotically.
In the control input equation, the derivative action needs to be avoided. Linear

tracking differentiator is introduced to obtain the derivative signal )94

X, =X,

XQ = — 2AX2 — AQ(Xl — 7720{) (531)

The linear tracking differentiator works like an overdamped second order filter
with modes equal to A = diag(\1, Ag, A3) > 0, with \; large enough to guarantee

fast tracking. Then, 71754 can be replaced with X,

T :(1/2 X IMVQ> + IR(UQ X Ze)Q + krl/g — IMTVQd + IMTJ;l(nQ)XQ
- IMTJ2_1(772)F1(772 - 772d) - IMJT(TD)(Wz — Naq — E) - IMFQ(VQ - Vzd)

(5.32)

5.2.3 Position Control Design

In the outer loop, PD control for position tracking is utilized and the desired
attitude for the inner loop is extracted. The scheme of control and extraction of

desired attitude is inspired by [1], with translational drag taken into consideration.
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The position error vector is defined as

Mie = Mid — M (5.33)

where the vector 14 is the desired position of the center mass of the quadrotor.

The second order position error equation for the smooth reference signal is given

by
e + Kpnie + Kpnie =0 (5.34)

Based on Routh-Hurwitz criterion, if Kp and Kp are selected to be posi-

tive definite matrices, then the position error 1;. converges to zero exponentially.

Substituting (5.33) in (5.34) to obtain

M = Ta +Kp(1a — ) + Kp(nig — m) (5.35)

Using equation (5.35) as the virtual input, and redefining it as U = 7 =
[U; Uy Us]". Substituting U in equation (4.10) yields
ki

u .
U= —gz.+Ji(n2) —2. — — (5.36)
m m

Combining the gravity acceleration term and the translational drag term in

45



the left hand side, and using property (4.4), the equation transforms to

ky . u
I (m)(U + gz + —my) = —z, (5.37)
Define the new variables
Un
ke
UQQ - (U + 9Ze + Enl) (538)
Uss
Equation (5.37) becomes
coCy coSy S0 Ui
u

SOCYSH — SYpCd  SOSYSH+ CpCdp COSP Up | =% (5.39)
SOCYC P+ SypSe  SOSYCo — CpSe COCH Uss

where C/(.) and S(.) denote cos(.) and sin(.), respectively. This leads to

Ull(COCQ/)) + UQQ(COS?/)) - Ugg(SO) =0

U1 (SOC)S$ — SO p) + Usg(SOSYSH + C1pCh) + Uss(COCH) = 0

U (COCYHC S + S1pC o) + Una(COSYC — C1pSe) + Us3(COCH) = % (5.40)

Assuming 0 # 0, and dividing both sides of the first equation (5.40) with cos 0,
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then the desired pitch angle needed by the inner loop can be computed as

0, = tan~! <UH cos Y + Uz sin wd) (5.41)

U33

After some manipulation, the desired roll angle equation is also determined as

Uyisinyy — U
g = sin~! 11810 ¢y 22 COS Pq (5.42)
\/U121 + U222 + U???)

where 1)4 is the desired yaw angle that can be selected to be zero for the quadrotor
case. The control input for translational motion can be computed from (5.40),

and given by the following equation

u = m(Uj1(sin 0 cos 1) cos ¢ + sin 1 sin ¢) + Upa(sin 0 sin ) cos ¢ — cos 1 sin @)

+ Uss(cos 0 cos ¢)) (5.43)

Throughout the thesis, the outer loop control of the quadrotor uses the algo-

rithm presented in this section.

5.3 Stability Analysis

This section presents the stability and robustness analysis for 1&I stabilizing con-
troller. From the first equation in (5.19), it is clear that the z subsystem has a
globally asymptotically stable equilibrium at zero, in order to complete the proof,

the boundedness of all the trajectories of the system (5.19) needs to be shown.

47



Consider 3 = e + e, one has

Z= —"Z
e =p — Heq
B= —nz (5.44)

Note that z(t) and B(t) are bounded for all ¢. Boundedness of e;(t) can be proved
by observing that e; is bounded as 3(t) is always bounded. To prove boundedness
of x; and x5, we can observe from the fact that x4 and x4, are always bounded
based on our design, and e;(¢) and es(t) are bounded, then from equation (5.11)

x; and x5 are bounded.

5.3.1 Robustness Analysis

The derived I&I control is based on assumption of system’s nominal parameters
and operating condition. However, modelling errors, parameter uncertainties, and
disturbances may occur in real situations which may affect stability of the system.
Let Ip = Ipr + Alg, Al = uncertainty on the propeller inertia, k, = k, + Ak,
Ak, = uncertainty on the rotational drag coefficient. The rotational dynamics

with modelling errors or uncertainties and exogenous is given by

I'/Q = IK/Il(—(I/Q X Il/g) — TR(VQ X Ze)Q — E’TVQ + T) + d(t)

(5.45)
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Assumption 5.1.

1. d(t) is an exogenous bounded random input, that is d(¢) < ¢, where ( is a

positive real value.

2. The desired state vector over the tracking path is bounded.

Theorem 5.2 Under assumption 1) and 2) and 161 control, all state trajectories

related to the error dynamics are uniformely ultimately bounded if

Vi(aey)T(aes) < d1lella, 01 >0 (5.46)

where ea = V9 — Vyy

Proof: Substituting into equation (5.45), one will have

1)2 :IKII(—(VQ X IVQ) — ([R -+ A]R>(I/2 X Ze)Q — (kr -+ Ak,«)UQ + T) + d(t)
:IK/Il(—(Vg X IVQ) — [R(VQ X Ze)Q — k’rljg + T) + AIRRVQ -+ AKRRVQ + d(t)

=TIy (—(va x Ivy) — Tp(va X 2)Q — kv + 7) + awy + d(t)

where

0 220
Algp £ N NE AKgr £ — Ak Iy} (5.47)
0 0 0
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and

(87 = AIRR + AKRR (548)

Introducing (5.47) and (5.48)to the state space error equation form, one will have

él —€9

éQ :F(VQ) + Gt — kld + avy + d(t) (549)

Using controller given by (5.18), the closed loop dynamic becomes

élzeg

& = —ve; — (v +p)ey + avy = —yie; — e + avy +d(t) (5.50)

where 73 = 7, and 75 = 7 + pu. The system without perturbation term aws is
globally exponentially stable provided v;,v, > 0. Since es = vy — 9y — Vg =

ey + . One can rewrite equation (5.50) as

(S31 0 1 €1 0 0
- + + (5.51)
€ —nl =l € e Voq + d(t)
E H{(e) B

As we can see the term H(e) vanishes at the origin while the term 3 does not

vanish. The value of e in H(e) is unknown, but it can be upper-bounded such
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that

[H(e)llz = V(cez) () < dyllef|z, 61 >0 (5.52)

Since vy, is bounded constant generated by the designer, and d(t) is assumed to

be a uniformly bounded disturbance. Therefore, they can be upper-bounded by

In order to analyze the stability of the system, Lyapunov Converse theorem is
utilized[48]. Since the system without the uncertainty and disturbance is an ex-
ponentially stable system, one will have Lyapunov function V' (e) satisfying these

three following conditions

Amin (P)llell2 < V() < Amax(P)]le]3

oV
—Ee = —eTQe < )\mln( )”eHg

= [2¢"P|l> < 2[[P[l2]le]lz = 2Amax(P)]le]l: (5.54)
2

H Oe

where V (e) = e Pe. Since E is Hurwitz, for unique P =PT > 0,and Q = Q" >

0 the following Lyapunov equation is satisfied

. P, P,
PE+E'P=-Q, P-=

} (5.55)
J

[PQ P,
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Taking the derivative of V'(e) along the trajectory of the system with uncertainty

and disturbance (5.51), one obtains

Vie)= —e'Qe+2e"PH(e) + 2P
= —e'Qe +2[e] Py + e, Psjae, +2[e] Py + ey Ps)(vyy +d(t))
< = Amin(Q)le[|3 + 2Amax(P)d1][e][3 + 2Amax(P)da]le]|2

< - )‘M”eHg + 2>‘m::1>c(1:))52||e||2 (5.56)

where Ay = Amin(Q) — 2 mae (P)d1. Suppose we have 0 < 0 < 1,

Vie) < — Aullell3 + 0llel3 — OAntllell3 + 2Amax (P)d2le]l:

= — (1= 0)Aullell — OAullel3 + 2Amax(P) 2 le]|2

2 Max(P)0
< = (- Oulell, Vel > PPN (557

If A\yy > 0, then 0, < 2’\/\“;1:)52‘%,)), therefore the stability of the perturbed system is

9

preserved. Based on ultimate boundedness theorem[48], the trajectories of the

system with uncertainty and disturbance are uniformly ultimately bounded by

Amax (P25, 2

b= a;l(az(lﬁl)) = D /\min(Q)

(5.58)

where a1 (r) = Anin(Q)7?, and an(r) = Amax(P)r?. Tt can be seen that the bounds
for the uncertainty and disturbance are dependent on the selection of Q. and the

matrix E that generate P through the Lyapunov equation. In conclusion, the
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selection of the I&I control parameters v and p will determine the robustness of

the system. |

5.4 Simulation

In order to validate the theoretical developments of the controller, several simu-
lations are conducted. In this simulation, all the states are considered accessible,
and I&I technique is compared to the backstepping technique. Uncertainty and

perturbation are injected to examine the performance for both the controllers.

5.4.1 Nominal Parameters

In the first simulation, 3D-space trajectory tracking control is considered with the
desired position as a helix-shaped path. Using nominal values for the parameters,
the performance of 1&I and backstepping controller is examined. The results of
the position and attitude angles tracking for both the controllers can be seen in
Figures (5.2) to (5.7)

In Figure (5.2) and (5.3), it can bee seen that under nominal conditions both
the controllers are able to perform trajectory tracking accurately. It can also be
seen that the attitude of the quadrotor is compatible with the translational mo-
tion and compatible attitude angles lead to accurate tracking in the translational
motion. Other plots of the trajectory tracking performance can be seen in Figure
(5.6) and (5.7).

The control inputs generated by the I&I controller have less chattering than
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Figure 5.2: 1&I 3D space trajectory tracking

the backstepping technique. This is due to the tuning parameters T, I';, I's, and
A for the backstepping control that are selected to ensure fast tracking. Low
pass filter is employed in the backstepping attitude stabilization control design,
so that the desired angular velocity and commanded attitude derivative dynamics
are compensated.

The positive constant values 1 and v that are selected for the I&I controller
are based on the need for fast rate of convergence of the system. The trajectories

of the system need to go to the invariant manifold sufficiently fast (selection of
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Figure 5.3: Backstepping 3D space trajectory tracking

~) and once in the manifold the trajectories have to go to the stable equilibrium
sufficiently fast (selection of x). By this selection, the inner loop is guaranteed to
be faster than the outer loop and the overall stability of the system is ensured.

For the outer loop PD control, Kp and Kp are tuned such that the tracking
performance of the position control is fast, but not faster than the inner loop.
The outer loop control parameters are selected to be the same for both I&I and
backstepping control, so that the performance of both the inner controllers can

be compared equally.
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Figure 5.4: 1&I Euler angles tracking
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Figure 5.5: Backstepping Euler angles tracking
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5.4.2 Uncertain Parameters

To compare the robustness of the inner loop controllers, uncertainty and a uni-
formly bounded disturbance are injected into the system. The uncertainty of
the rotational drag coefficient k, and propeller inertia Iy is selected to be time-
varying with the form A sin(wt + ¢). Certain values for amplitude and frequency
are chosen such that the robustness of the system is tested to the extreme point.

In the first scenario, variation of the uncertainty is injected with a value close to
the unstable point of the backstepping controller. It can be seen that I&I provides
better performance compared to the backstepping technique, Figure (5.10) and

(5.11).

60 ..
° T
) T
40 &>
&
.
% S
£ B g g
E 20 %A‘ - Ajv Fe pa
“f\\\ |
10 R )
*
B

X (m) Y (m)

Figure 5.10: 1&I 3D space trajectory tracking parameter changing before unstable
point

In the second scenario, the uncertainty is introduced beyond the stable point
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Figure 5.11: Backstepping 3D space trajectory tracking parameter changing before
unstable point

of the backstepping controller. The results of the simulations can be seen in Fig-
ure (5.18) and (5.19). 1&I controller produces stable and acceptable performance,
while the backstepping technique is not able to maintain the stability of the sys-
tem. In the backstepping technique, the Lyapunov condition for stability is easily

violated once there are uncertainties or disturbances in the system.
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Figure 5.13: Backstepping y-z tracking under uncertainties
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Figure 5.17: Backstepping control input under uncertainties
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5.5 Conclusions

In this chapter the trajectory tracking control design for the quadrotor is pre-
sented. A new controller based on I&I methodology is designed in the inner loop
and a PD controller in the outer loop. In order to investigate the performance of
I&I controller in presence of uncertainty and disturbance, backstepping controller
is used as a benchmark. From the simulation results, it can be seen that the
robustness of 1&I control is better compared to the backstepping control. The ro-
bustness analysis of the closed-loop 1&I control is presented in terms of robustness

with respect to parameter uncertainties and disturbances.

5.5.1 Contribution

The main contributions in this chapter are

1. Design of 1&I stabilizing controller for the underactuated quadrotor UAV.

2. Extension of the work in [1] by including the translational and rotational

drag terms.

3. Stability and Robustness analysis of the closed loop system in the presence

of uncertainty and exogenous disturbance.
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CHAPTER 6

I1&1 OBSERVER DESIGN

6.1 Introduction

The 1&I observer was introduced in [21]. This observer requires the invariant
manifold that is rendered attractive. In this chapter, an 1&I-based reduced-order
observer is introduced to estimate the translational velocity of the quadrotor . For
comparison, the classical Luenberger observer is presented.

Prior to the development of the I&I reduced-order observer, consider a system

described by equations of the form

¢="f(¢y.t)

y =£(¢y.1) (6.1)

where ¢ € R" is the unmeasurable part of the state, and y € R™ is the measurable
part of the state. It is assumed that fi(.) and f3(.) are forward complete[2].

Consider the following definition
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Definition 6.1 (see [21]). The dynamical system

§=ally,t) (6.2)

with &€ € RP, p > n, is called an observer for the system (6.1), if there exist
mappings B : R? x R™ x R — RP and ¢ : R" x R™ x R — RP that are left-

invertible and such that the manifold

M={(¢.y, 1) eR"XR" xR"xR: B(§,y,t) = ¢(C.y, 1)} (6.3)

has the following properties.

1. All trajectories of the extended system (6.1) and (6.2)that start on the

manifold M remain there for all future times.

2. All trajectories of the extended system (6.1) and (6.2)that start in the neigh-

bourhood of M asymptotically converge to M.

6.2 1&I Reduced-Order Observer

In this section, a general tool for constructing a reduced-order observer based on

Invariance and Immersion is presented. Consider the following theorem

Theorem 6.1 ([21]) Consider the system (6.1),(6.2) and suppose that there exist
C! mappings B(€,y,t) : RP x R™ x R — R? and ¢(¢,y,t) : R" x R™ x R — RP,

with a left-inverse ¢ : R™ x R™ x R — R, such that the following hold.
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(A1). Forally, & and t, B(€,y,t) is left-invertible with respect to € and

det(i) 40 (6.4)
(A2). The system
b= SRR -y )+ 52 B(Ey ) - Sy
o . O O¢ o¢
+ &C:éfl(C,y,t)—&fl(C,yiH ot ot (6.5)

with ¢ = ¢L(H(C,y,t) + 2), is a (globally) asymptotically stable equilibrium at
z = 0, uniformly in ¢,y andt.

Then the system (6.2) with

o\ ' (o8, . o8 0 .
D¢ . d¢

where ¢ = ¢L(B(€,y.1),y,1), is a (global) observer for the system (6.1).

Proof: See [21] for proof. |

6.3 Observer Design

In this section, the observers for the translational dynamics of the quadrotor are

designed. Based on the information obtained from the input and output of the
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outer loop, the unknown states of the system are estimated. The structure of
the dynamics allows us to treat the translational dynamics as a linear system. If

(4.10) is transformed into a state equation form

5(1 = X9

. u
X9 = — JZe + JQ(TIQ)EZ(& - ktXQ (67)

The term —gz, + J1(12) %z, is generated by the inner loop and is independent of

x. Let u = —gz. + J1(12) %2, then (6.7) becomes

5(1 = X9

5(2 =u-— ]{,‘tXQ (68)

By using equation (6.8), two types of observers will be designed, the first one is a
reduced-order I&I observer and the second one is the Luenberger observer.

The reduced-order 1&I observer works as an estimator of the inertial velocities
using information obtained from the inertial positions and input. The Luenberger
observer estimates all the states using information from the input and output in

the outer loop. The structure for both the observers can be seen in Figure (6.1)

6.3.1 I&I Observer

Consider the inertial position system described by equation 4.10, and suppose

that only the position 1, is measurable. The objective is to design an asymptotic

69



|
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Figure 6.1: Observer Block 1&I Reduced-Order Observer(Top), Luenberger Full-
Order Observer(Bottom)

observer for the unmeasured states (velocity ;). Note that (6.8) can be written

in the form (6.1), namely

y=¢

¢=u-k¢ (6.9)
where ¢ = [(1,(,(3]" = 7y is the unmeasurable part of the system, and y =
[y1,y2,y3]" = my is the measurable part. The term u = —gz. + Jy(n,) 2z, is

considered as the input, since it is produced from another system and is acting
as an input to system. Before the observer is developed, it is supposed that the

following assumption holds

Assumption 6.1. The translational drag coefficient is unknown but can be up-
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perbounded by
[[ielloo < (6.10)

The first step in designing the observer is to define a mapping ¢(¢,y) that
renders the manifold M to be attractive. Taking ¢(¢,y) = ¢, the error equation

z=PB(&y)— ¢(¢,y) has the following dynamics

o . 0 op . 0
zzg—f&gy—%c—a—fy (6.11)

where & = [£1,&,&]". The observer dynamics are obtained from the error dy-
namics in equilibrium condition with ¢ = é , Where f is the estimated state, and

given by the following

'__@_1%w _%w
¢~ (%) <6yy<_¢ accg_¢> (612

Substituting equation (6.12) in (6.11), the following equation is obtained

0B . ‘ o ’ oB. 09 ;
+52C oy — i
e Ol oyt

- — {— + ktI} z (6.13)
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Hence, selecting

B&y) =€+ Ay (6.14)

where X = diag(\(, Ao, A\3) is a constant matrix, ensures that (A1) is satisfied.

Finally, the error dynamic equation becomes

= —(A+ k)2 (6.15)

if we select \; > ¥, i = 1,2,3, then the zero equilibrium of the system (6.15)
is globally asymptotically stable. Hence, (A2) holds, and the following observer

dynamic is obtained

= —&-Ay+u—kI(E+Ay)

= — I+ kDE+Ay) +1 (6.16)

with the estimated states given by

~

C=E&+ Ay (6.17)
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6.3.2 Luenberger Observer

In this section, for the purpose of comparison a classical Luenberger observer is

designed. Consider a linear system of the form

y = Cx (6.18)

where x € R" u € R™ and y € R?. Rewriting equation (6.8) in the form of

equation (6.18) one will obtain

0 I 0
X = X + u
0 —kI I
— S——
A B
v=|10|x (6.19)
——
C

Now consider the following observer structure

x = Ax + Ba + L(y — Cx) (6.20)

where L is the observer gain. Define the observer error as

e=x—x (6.21)
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and the following is obtained

é=%—x=(Ax+Bi) — (Ax + Bii + Ly — LCX)

— (A-LC)(x —%) = (A - LC)e (6.22)

Then, x — x as t — oo, provided the observer error dynamics is asymptotically
stable. This result can be achieved if the observability condition is satisfied so
that the eigenvalues of (A — LC) can be placed anywhere in the left half of the

complex plane by the appropriate selection of the observer gain L.

6.4 Simulation

The simulation in this section is conducted under the assumption that some of
the states are not accessible, hence the observer is introduced. The performances
of 1&I and Luenberger observer are investigated and compared. In both the sim-
ulations, the measurements are corrupted with Gaussian noise having zero mean.

From Figure (6.4), one can see that the estimation error for the 1&I observer
has zero mean, this is due to the fact that the measurements are corrupted with
the noise. The variance of the estimation error for the 1&I observer is much smaller

compared to the Luenberger observer, as seen in Figure (6.5).
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Figure 6.2: Output feedback 3D space tracking under 1&I observer
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Figure 6.3: Output feedback 3D space tracking under Luenberger observer
75



6 T T T T T T T
ne |
ok |
=
I ol
3, |
" |
" . . . . . . .
10 20 30 20 50 60 70
t(second)
6
4 |
~ 2 7
o
I o
“F,L |
kb |
o . , . . . \ .
10 20 30 40 50 60 70
t(second)
0.5
01 1
. 005
Yool I
Loop \
“~ 005
il
\ . . \ . \ .
10 20 30 20 50 60 70
t(second)

Figure 6.4: Estimation error 1&I observer
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Figure 6.5: Estimation error Luenberger observer

76



In designing the Luenberger observer, the poles of the error dynamics are
placed on the left hand side of the complex plane and far from the imaginary axis
in order to provide a fast observer. This in turn amplifies the amplitude of noise
in the system. This is why the variance of the estimation error of the Luenberger

observer is much bigger compared to the 1&I observer.

¢ (rad)

0 (rad)

¥ (rad)

I 1 1 1 I 1 1
0 10 20 30 40 50 60 70
t(second)

Figure 6.6: Euler angles tracking under 1& observer

The results of estimation for both observers can be seen in Figure (6.6) and
(6.7). The observers produce acceptable state estimation that can be used in
state-feedback control design for the outer-loop. Eventhough the estimated states

are used for the feedback control, the stability of the system is preserved.

77



¢ (rad)

,m T T T T T T
osH 3 %

0 J u\‘/\‘\/\’\/\\
B .

o o 20 % w0 %0 %

t(second)

5 ; i i M
’ gt it

t(second)

L
70

0 (rad)

Y (rad)

Figure 6.7: Euler angles tracking under Luenberger observer

6.5 Conclusions

This chapter has covered the design of the observers for trajectory tracking control
of the quadrotor. The objective of the observers is to estimate the translational
velocity utilizing information from the input and output in the outer loop.

The simulation results show that the I&I and the Luenberger observer are able
to provide good estimation for the unmeasurable states. Since it is known that in
linear systems the separation principle holds, the estimation results of both the
observers can be used in the feedback control without affecting the stability of the

system.
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6.5.1 Contribution

The main contributions in this chapter are

1. Design of the I&I-based reduced-order observer for the translational dynam-

ics the of quadrotor UAV.

2. Design of the classical Luenberger observer for benchmarking study.
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CHAPTER 7

I1&1 ADAPTIVE CONTROL

7.1 Introduction

In this chapter, two recent adaptive control techniques used in the inner loop
control of the quadrotor UAV are presented. The first is the I&I adaptive con-
trol technique which was first presented in [2|. In this technique, the certainty-
equivalent control law is added by a new term that will shape the manifold such
that the plant is immersed to the asymptotically stable target dynamics. The
second technique is the £, adaptive control developed by [31] which is used for
comparison. The performances of both the techniques will be compared by the

simulations in the presence of the unknown and uncertain parameters.

7.2 Adaptive Control Design

In this section, the design of two recent adaptive control techniques are proposed.

The first technique is the 1&I adaptive control, and the second technique is £
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adaptive control.

In order to design the I&I adaptive control, the rotational dynamics of the
quadrotor need to be rewritten in linearly parameterized form. The details of the
parametrization are presented in the next section, and the scheme of 1&I adaptive

control can be seen in Figure (7.1).

v " . V9
24 7 =g ' (= f(r2)(0 + B(v2) — Kpva + Kpr) . Vo = f(Vg)@ +97 >

A

A

Z

A

6=1[6

Figure 7.1: 1&I Adaptive Control

For £, adaptive control, the nonlinear term also needs to be rewritten into
two linearly parameterized time-varying parameters. The details of linear param-
eterization of this nonlinear function can be found in the next section, and the

scheme of this £, adaptive control can be seen in Figure (7.2).

%)
Uy = f(l/g)e + g7 >

Vad T

=k W kD(s)

A

A+ b(wr + 0]|z]| o +6)

z

0 = TProj(f, —||z|| b PZ)
6 = I'Proj(4, —bPi) -

*{w7‘+/}:w7+éHx||oo+&

Figure 7.2: £; Adaptive Control
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7.2.1 1&I Adaptive Control for Linearly Parameterized

Plant

Consider the system in the form of linearly parameterized plant, the dynamics

can be described by

x = fo(x) + £1(x)0 + g(x)u (7.1)

where x € R" is state, u € R™ is input, and @ € R? is an unknown parameter.

The adaptive state feedback control law is given in the following form

u=v(x,0) (7.2)

ES

such that all the trajectories of closed loop system are bounded and tlim x(t) = x*.
—00

In I&I adaptive control, the design of the control law is decoupled from the
design of the adaptation law, which leads to more flexible control scheme [2]. If

the following assumption holds

Assumption 7.1. 3 u = v(x, 0), such that the system

x =f*(x) = f(x) + g(x)v(x,0) (7.3)

has a globally asymptotically stable equilibrium at x = x*.

Then the following theorem can be utilized in our adaptive control design.
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Theorem 7.1 ([21]) Consider the system (7.1) with an equilibrium point x* to

be stabilized, assume the following condition holds

(A1). There exists a mapping B : R™ — RY, such that all the trajectories of the

following system, with z = 0 — 0 + B(x)

. B
z= — {afl(x)} z
x = 1*(x) + g(x)(v(x,0 + z) — v(x,0)) (7.4)
are bounded and satisfy
lim (g(x)(v(x,0 +z) — v(x,0)) =0 (7.5)

t—o00

then the system (7.1) is adaptively 161 stabilizable.

Proof: Proof see [21]. |
The rotational dynamics of the quadrotor in equation (4.14) can be rewritten

into linearly parameterized system as

X = fo(X)e() + fl(X)Hl + fQ(X)92 + f3(X)93 + Gu (76)
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where

X é vy, fO(X) é diag(_qr7 —pr, _pq)7 00 é []17 ]27 [3]T7
[1 :([z - [y)/]za ]2 - (Ix - [z>/1y> ]3 - ([y - [:c)/[za
fl(X) é {Q7O7 O]Tv 01 é [RQy fQ(X) é [O7p7 O]T'/ 02 é _[ng

f3(X) = [p7Q7T]T7 93 = _km G £ diag(lil Iil [71)7 u = [Tp'/Tqur]T

T 'Yy Tz

To satisfy Assumption 7.1, the following controller is selected

u = Gil(—foeo — f191 — fg@g — f393 - KBX -+ KFI') (77)

where Kz > 0 is the feedforward gain, r is the bounded reference and for feedback
gain Kg > 0, the following globally exponentially stable closed loop system is

obtained

X = —KBX + KFI‘ (78)

To apply 1&I adaptive control on the rotational dynamics, define the following

implicit manifold

Zg :éo — 6y + Bo(x)
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and the dynamics are given by

. 9Bo
Zy) — 00+ gx
980
ox
. A ap; .
Zi = 0i+ EX

Ao 06

it ox

— 0o + Z2°(£,(x)80 + £1(x)0; + Fa(x)0s + £5(x)05 + Gu) (7.10)

(fo(X)00 + f1 (X)@l + fQ(X)02 + f3(X)03 + Gu) (711)

if the updating laws (w(x, @) = 6) are sclected to be

aﬁo(X)
ox

+ £3(x) (03 + B3 — z3) + Gu)

. 8[31 (X)
ox

(f0(x)(B0 + Bo) + £1(x)(01 + B1 — 21) + £2(x) (02 + B2 — 20)

Wy = —

(fO(X)(éO + Bo — 20) + fl(x)(él + B1) + fQ(X)(éZ + B2 — 22)

w1 =

+ £5(x) (05 + B3 — 23) + Gu)

+ £3(x) (05 + B3 — 23) + Gu)

_ 8B3 (X)
ox

+ £5(x) (03 + B3) + Gu)

(fo(x)(éo + Bo — 2o) + fl(X)(él + 61— 2) + f2(X)(92 + B2)

(f0(x)(00 + Bo — 20) + £1(x) (01 + B1 — 21) + £a(x) (0o + B — 22)

w3 —

substituting these into (7.10) and (7.11), and utilizing (7.9) one will have

0= — (8680)(:() fo(x)> 20

L= — (aiﬁfj‘) fi(x)> 2 (7.12)

85



If % = 7ol fo(x), and 9Bilx) _ £ (x), where 79 > 0, +; > 0 are selected, the

(X
ox

following is obtained

lim z(t) =0 = 0 =0+ B(x) (7.13)

t—o0

Finally, the 1&I adaptive control is given by

u =G (~£(00 + Bo) — £1(01 + B1) — £2(02 + o) — £3(05 + B3) — Kpx + Kpr)

(7.14)
7.2.2 1&1I Adaptive Control Analysis
Consider the Lyapunov function candidate
V(z) =z Pz (7.15)

the derivative of the Lyapunov function along the trajectories of the (7.12) is given

by

V(z)=z"(®"P +Pd)z (7.16)
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where

Since ® is Hurwitz, for QT

Yol £§
0

0

0
Y f

0

0
Yofy £

0

0

0

3ty f3

(7.17)

= Q > 0 and unique PT = P > 0, the following

Lyapunov equation is satisfied

®'P+P®=-Q

substituting (7.16) in (7.18) one will have

V(z)

zTQz <0

(7.18)

(7.19)

hence the system (8.10) has a globally stable equilibrium at zero, and the asymp-

totic stability is followed by the LaSalle’s Invariance Principle.

Since V (z) is a positive definite function and V(z) < 0, it implies V(z) € Lo

which implies z € L., and therefore the off-manifold coordinates are bounded.

By integrating V (z) it follows that
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hence z € L5 N L. Since the manifold coordinate is given by z = 8 — 8 + B(x),

it implies that é, B € L, so all the signals in the closed loop system are bounded.

7.2.3 L, Adaptive Control

To proceed with the design of the £ adaptive control, linear parametrization of
the nonlinear function needs to be done. One of the goals of the linear parametriza-
tion is to represent unknown parameters in the linear time-varying form, so that
the dynamics of the predictor can be selected from it. The rotational dynamics

presented in (4.14) can be rewritten in the form

x = A,x + b(wug + £(t,x(t))), x(0) = xo0

y = c'x(t) (7.21)
where
X 2 vy, A,, € R™™ & 3 known desired Hurwitz matrix
b=1, w = 1'_41, U, 2 72 £, Adaptive control

f(t X(t)) é IEF(—(VQ X IMUQ) — ]R(VQ X ZC)Q — kTVQ), CT = ngg (722)

To proceed with the design of £, adaptive control, the Assumption 3.1 need
to be satisfied. Based on these assumptions, two time-varying parameters are

obtained from the nonlinear function f(¢,x(t)) using ||x||o as a regressor. The
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lemma 3.2 proves this statement and by utilizing it, (7.21) can be rewritten as

x = A,x + b(wugy + O)|x]|e + o), x(0) =x0
T
y =c¢ x(t) (7.23)
From (7.23) the following state predictor is considered
X = ApX + b(wigg + 0|x||o + &), %(0) = xq
y=c'x (7.24)

where x € R" is the predicted state, y € R" is the predicted output, 0 and & are

the estimated parameters. Define the error x = x — x, 0=0-— 0,and o =06 —o0,

and the following error dynamic is obtained

x = ApX + (0% + 7), %(0) =0 (7.25)
Consider the Lyapunov function candidate
~ 1
V(x,0,6)=%"Px+ f(HTH +6'a) (7.26)

The derivative of the Lyapunov candidate (7.26) along the trajectory of (7.25) is
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given by

. ~ . . 2 L .
V(x%,0,6)=%x"Px+x'Px+ f(aTa +o'a)
~ Qs .
— —%x'Qx + 2% 'PH(0||x||s + &) + f(¢9T¢9 +6'0)

(7.27)

Considering the property 3.1 of the projection operator, one can upperbound the

derivative of the Lyapunov function as

V(%,0,6) = — %' Qx + 2% ' Pb(0]|x||s + &) + 2(8"Proj(6, —|x||.bPX)
+ & Proj(0, —bPx))
= — %' Q% + 20" (||x[|bP% + Proj(0, —||x| . bPX))

+ 26 " (bPx% + Proj(&, —bPx))

< —-x'Qx (7.28)
with the adaptation law given by the following
0 — 6 — T'Proj(0, —|[x||.bP%)
& = o = I'Proj(&, —bPX) (7.29)

where I' > 0 is the adaptation law rate and Q = QT > 0, with P = PT > 0
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satisfies the Lyapunov equation
AP +PA, = -Q (7.30)

The Laplace transform of the adaptive control signal u,y is selected to be

Cls)

o als) = kr(s)) (7.31)

uad(s) = —

where fi(s) and r(s) are the Laplace transform of fi(t) £ 0(t)||x||ls + &(t) and
r(t) £ reference signal, respectively. Feedforward gain is given by k, £ _ﬁi_b'
If the filter C(s) is selected to be

C(s) 2 wkD(s)

T wkD(3) (7.32)

with DC gain C(0) = I. The selection of D(s) = I yields first order strictly proper

transfer function

wk

C(s) =
)= Tron

(7.33)

Substituting (7.32) into (7.31), the Laplace transform of the adaptive control

signal becomes

uq(s) = —kD(s)(wuga(s) + f(s) — kyr(s)) (7.34)
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Remark from [31], if the derivative of f(¢, x) with respect to x has a uniform bound

<dj;, =L (7.35)

of(t,x)
ox

that holds uniformly Vx € R"™, then the following £;-norm condition has to be

satisfied for £ adaptive control

IG(s)]le, L <1 (7.36)

where

Q
—~
»
~—

>
o
—
»
~—
—~
Q
—~
»
~—
|
L}
-
o
—~
»
~—
>

(sT— A, (7.37)

The analysis of this nonlinear £; adaptive control in detail can be seen in [31].

7.3 Simulation

Utilizing the 1&I and the £, adaptive control design, two simulations have been
performed. The parameters of the plant in the inner loop are assumed to be
unknown but bounded and are also changing randomly with Gaussian distribution.
The objective of the controller is to track a bounded smooth predefined trajectory
in the presence of unknown and uncertain parameters and exogenous disturbances.
The trajectory is selected to be helix-shaped and the desired yaw angle is zero. By

this scenario the performance of the proposed adaptive controllers are investigated.
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60

Z(m)

Figure 7.3: 1&I 3D trajectory tracking

It can be seen from Figure (7.3)-(7.5), despite of the unknown and uncer-
tain parameters the tracking performance of the PD controller for the transla-
tional motion, and the I1&I adaptive controller for the rotational motion is accept-
able. Eventhough the parameters in the outer loop are assumed to be perfectly
known, the stability and tracking performance may be disturbed if the inner loop

is unstable or has poor tracking performance. Hence, by this simulation, it is
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shown that once the inner loop is stable and has good tracking performance, i.e
tlgglo voy(t) — vo(t) = 0, the stability of the outer loop is concluded.

In order to see the control signal clearly, Figure (7.6) is zoomed. In the actual
size, the control signal (7,,7,,7.) in the transient part reaches it highest value
which is 5N.m. It is due to the non-zero initial conditions and causing the con-
troller to use high energy to minimize the error.

In the first figure in Figure (7.7), it can be seen that the estimated parameters
(8o + Bo(x)) that are used in the controller reach the steady state values. In the
second figure in Figure (7.7), if the simulation time is increased it can be seen that
it will settle in the steady state values eventually. In the theory of 1&I adaptive
control [21], it is stated that it is not necessary for the estimated parameters to
converge to its true values.

The second simulation is conducted using £, adaptive control. The environ-
ment of simulation is similar to the first simulation. From Figure (7.8)-(7.10), it
can be seen that the £; adaptive control provides good tracking performance in
the inner loop. In the control signal (Figure(7.11)), £; adaptive control produces
smoother control signal compared to the I&I adaptive control. In practical point
of view, smoother control signal is better, it will keep the age of the actuator
longer compared to the fluctuating control signal. The fluctuating control signal

also will directly damage the actuator, hence creating fault that will disturb the

stability of the system.
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7.4 Conclusions

This chapter presents two recent techniques in adaptive control, i.e I&I adaptive
control and £; adaptive control, for the quadrotor UAV. The quadrotor investi-
gated in this chapter belongs to a class of nonlinear systems and is assumed to
have unknown and uncertain parameters, in which the proposed adaptive controls
are required for stabilization. Based on the simulations, both the 1&I and £
adaptive control show acceptable performance in terms of trajectory tracking. In
terms of control signal, £; adaptive control has a smoother signal compared to
the 1&I adaptive control. In the next chapter, another benchmarking for both the
adaptive controllers will be investigated in directional drilling system containing

internal delay.

7.4.1 Contribution

The main contributions presented in this chapter are

1. Design of I&I adaptive control for the underactuated quadrotor UAV with

unknown and uncertain parameters.

2. Analysis of 1&I adaptive control.

3. Design of £; adaptive control for the underactuated quadrotor UAV with

unknown and uncertain parameters.

100



CHAPTER 8

I1&1 ADAPTIVE CONTROL

BENCHMARKING FOR SYSTEMS WITH

DELAYS: THE CASE OF DRILLING SYSTEM

8.1 Introduction

This chapter presents another benchmarking of 1&I and £, adaptive control which
is designed for EFFSZM directional drilling control system. In this section, a short
introduction of the directional drilling system and control is presented.

In oil and gas industry, the directional drilling system plays an important role
in enhancing the oil and gas production. The directional drilling allows more oil
and gas to be drained compared to the purely vertical drilling. Previous research
shows that the directional drilling systems are able to extract oil and gas 2 to
25 times than the standard vertical drilling [49][50][51]. In directional drilling
system, control is the crucial part. Specifically for trajectory tracking directional

drilling system, automatic control theory needs to be utilized and investigated.
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In order to design a proper control for the directional drilling system, a model
that represents the dynamics of the directional drilling system needs to be for-
mulated. In [52], a transfer function relating the centreline of the drilling hole
to the actuator stimuli is derived. A quasi-polynomial is used to approximate
the space-curve of the centreline of the hole, with distance m instead of t as the
independent variable.

It is almost impossible to get 100% accuracy in the modelling, hence a robust
controller that can handle wide uncertainties is needed. In the previous work
[40][53], a recent adaptive control technique, i.e £, adaptive control, is utilized.
Some parameters in the model are considered to be uncertain but bounded. The
objective of the controller is to stabilize the system in the presence of the param-
eter uncertainty and produce minimum tracking error. The results presented by
the simulation show that the proposed controller can fulfill the objective.

This chapter is utilizing 1&I adaptive control for a class system with unknown
parameters and uncertainty in the presence of internal delay. The result of this

controller will be validated by simulations and the performance will be compared

to the £, adaptive control.

8.2 Directional Drilling System

In directional drilling system, the transfer function relating the centreline of the
drilling hole to the actuator stimuli is derived in [52]. The distance drilled is used

as the independent variable instead of time, which means the differential equation
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that represents the directional drilling system is presented in distance drilled (m).

There are several types of model derived in [52], one of them is EFFSZM model.

In EFFSZM, from the known geometry and action of actuators, the force at the

drill bit are explicitly calculated. The pipe work is assumed to be infinitely stiff

with zero mass and the drill bit is assumed to be finitely sharp.

Consider EFFSZM drilling system differential equation given by the following

dH(m) (1+C; Cf 1+ C;
= —— | H Vv —H(m—-29> H(m—d
) (A5 S )+ 2 W) = HOm = 0) + St = 0
b—a
_—  F
WO I, Fealm)
dH(m)
N = 8.1
(m) =" (1)
f
|
Force Bitm Illk(;\’/
actuator __ T f //
Hem) Stabilizer
positions
. Lower
Hole centerline collar
Him —a) 7N
Him —¢) X ,’ !
H(m —b) £
/
- \\ \;’
H(m - d) et/
m—d m—c m—b m—a m
Flex

Upper collar

Figure 8.1: Flex-hinge Directional Drilling System [52]
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where

c—b Kflem d N ) '
1= = th 1l
f (Kams—%wﬁ oy M the distance drilled

H(m) £ lateral displacement of the borehole

a = distance between the force actuator and the bit
b = distance between the lower stabilizer and the bit
¢ £ the relative position of the flex-joint to the bit
d £ the position of the upper stabilizer to the bit

Kflex £ angular spring rate of the flex joint

K anis = ration of rates of penetration along and across the bit

V(m) = the actuator displacement at the lower stabilizer

WOB £ the applied drilling load

Fqa(m) = the force actuator output

U (m) = the angle of borehole-propagation w.r.t the m — axis

This EFFSZM drilling system is described in Figure 8.1. In the directional

drilling dynamics, some parameters such as a, b, ¢, d, and Ky, are known |,

while WOB and K,,;s are unknown but bounded. The values for these unknown

parameters vary in the following range

1 < Kanis <10, 5 x 10* < WOB < 8.9 x 10* (8.2)
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8.3 Adaptive Control Design

In this section, the design of two recent adaptive control techniques is proposed.
The first technique is the I&I adaptive control and the second technique is £
adaptive control for comparison. The performances of both the techniques will be
compared by the simulations in the presence of unknown and uncertain parame-

ters.

8.3.1 I1&I Adaptive Control for Linearly Parameterized

Plant

System (8.1) can be presented as linearly parameterized plant, which is given by

dH(m)

dm

= fo+ fi(H)01 + fo( H)O0y + f3(H )05 + GOyu(m) (8.3)
where 0;, i = 1,2, 3,4 are the unknown parameters, and

FolH) 23 (). fi(H) 2 Hm),

fo(H) ZH(m —b), fs(H) = H(m — d),

h—
G ébVV.TC;( for nominal K,,;; and WORB

u(m) 2F,aq(m) (8.4)
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To satisfy assumption 7.1, the following is selected

u(m) £ v(H,0) =— (GO (fo(H) + fi(H)0: + fo( H)0s + f3(H)03 + KH(m)

— K,r) (8.5)

where K, > 0 is the feedforward gain, r is the bounded reference and for feedback
gain K > 0, the following globally exponentially stable closed loop system is
obtained

dH(m)
dm

=—KH(m)+ K,r (8.6)

In order to apply 1&I adaptive control on EFFSZM system, consider the following

implicit manifold

2= 0; — 0; + Bi(H) (8.7)

with the dynamics are given as

dm W di  dm
o dpi(H)
=w; + (fo(H) + fi(H)01 + fo(H)02 + f3(H)03 + GOsu(m))  (8.8)

dH
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if the updating laws are selected to be

(fo(H) + f1(H)(01 + Bo(H)) + fol H)(02 + Bo(H) — 22)

+ fs(H) (03 + Bs(H) — z3) + G(04 + By — za)u(m))

(fo(H) + fi(H)(0r + Bi(H) — 21) + fo(H)(0s + Bo(H))

+ fa(H)(05 + B3(H) = 23) + G0y + By — za)u(m))

(fo(H) + fr(H) (01 + B1(H) = 21) + fol H) (02 + Bo(H) — 22)

+ f3(I)(03 + Bs(I)) + G(04 + Bs — za)u(m))

(L)
wy = — 2
g = — 4D
i = — 2D

(fo(H) + fr(H) (01 + Bi(H) = 21) + fo(H) (02 + Bo(H) — 25)

+ f3(H)(0 + Bs(H) = 23) + G(0s + By)u(m)) (8.9)

one will have

%%“ (dﬁx )fﬂ ))Zj(ﬁﬂj—]ﬂQ,Q
e (%G“<"L>> “ (8.10)

If %% z (H) v;f;(H), and d’B 4 BalH) _ ~, Gu(m) where v; > 0 are selected, the following

is achieved

lim z(m)=0 = 0;=0;+ Bi(H) (8.11)

m— 00
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Finally, the I1&I adaptive control is given by

v(H,0; + B;) = — (G(0s + B1) " (fo(H) + fi(H)(01 + Bi(H)) + fo H)(02 + Bo(H))

+ f3s(H)(03 + Bs(H)) + KH(m) — K,r) (8.12)

The selection of 34( H) has to be done considering the probability of the singularity

in the control law. If the following is selected

Bu(H) = ¢+ Gu(m)H(m) (8.13)

for c € R and B4 # —0y4, the singularity problem will not exist.

8.3.2 1&I Adaptive Control Stability Analysis

Consider the Lyapunov function candidate

V(z) = 2" Pz (8.14)

where PT = P > 0, the derivative of the Lyapunov function along the trajectories

of the (8.10) is given by

V(z) =2 (®"P + Pd)z (8.15)
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where

nff 00 0
0 ~vf? 0 0
o =— (8.16)
0 0 w0
0 0 0 va(Gu)?
Since ® is Hurwitz, the following Lyapunov equation is satisfied
TP+ PO = —Q (8.17)
where QT = Q > 0, then one will have
V() =—-2"Qz<0 (8.18)

hence the system (8.10) has a globally stable equilibrium at zero and the asymp-
totic stability is followed by the LaSalle’s Invariance Principle.

Since V() is a positive definite function and V() < 0, it implies V(2) € Lo
which implies z € L., and therefore the off-manifold coordinates are bounded.

By integrating V(z) it follows that

V(oo) = V(0) = — /OOO 2" Qudt (8.19)

hence z € L3N L. Since the manifold coordinate is given by z = 0 — 0 + B(x), it
implies that 0, B € Loy, so all the signals in the closed loop system are bounded.
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8.3.3 L; Adaptive Control

The EFFSZM system dynamics presented in (8.1) can be rewritten in the form

i(m) = Apa(m) + bo(wu(m) + 0 (m)x(m) + 0] (m)x(m — 1)
+ 0y (m)x(m — 1) + o(m))
z(m) =0 Vm € [—7,0] (8.20)

y(m) = cox(m)

where A,, € R is Hurwitz, 0q, 0, 0, € R are unknown, w is unknown with known
sign, and by, ¢o are known. The delay 71,72 € RY, (77 < 73) are known, o(m) is

the input disturbance.

Assumption 8.1.

1. The parameters 0y, 0, 05 belong to given compact convex sets g, O1, O, re-

spectively, and continuously differentiable with uniformly bounded deriva-

tives.

Ho(m) € @0, Hl(m) € @1, Qg(m) € @2, Vm Z 0
Qmax 0 = HlaX9€@0||¢9||1, Qmax 1 = maXgpeo, ”‘9”1; Qmax 2 = maXgeo, ”9”17

lOo(m)ll < oy, 10:(m)I| < doy, N1O2(m)]| < oy, NG(m)|| < dp,  (8.21)

The disturbance is upper-bounded by |o(m)| < A, ¥V m > 0, where A > 0

is a known conservative bound. The unknown parameter w is lower and
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upper bounded by

W <w<wy, 0<w < wy (8.22)

Based on equation 8.20, the predictor for £; adaptive control is given by the

following equation

2(m) = Api(m) + bo(u(m) + 03 (m)x(m) + 0] (m)x(m — 1)
+0; (m)x(m — 1) + 6(m))
z(m) =0 Vm € [—7,0]

§(m) =cq &(m) (8.23)

where #(m) € R is the predicted state, §(m) € R is the predicted output, 0, o, &
are the estimated parameters. The adaptive laws for these estimated parameters

with the projection are given by the following

~ ~ ~ ~

QO(m) = FPI‘(Qo(m), —%T(m)Pbe(m)), 60(0) = 900

~ ~ ~ ~

01(m) = T'Pr(0,(m), =& " (m)Pbox(m — 7)), 01(0) = 0o
05(m) = TPr(0y(m), —& " (m) Pbox(m — 13)), 62(0) = fayg
o(m) = TPr(6(m), —& ' (m)Pby), 60(0) = 69

w(m) = TPr(&(m), —& " (m)Pbou(m)), wo(0) = o

(8.24)
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where T' > 0 is the adaptation law rate, &(m) = &(m) — x(m), and for some

Q=0Q" >0, with P = PT > 0 satisfies the Lyapunov equation
AL P+ PA, =-Q (8.25)
The control signal is defined by

u(s) = —kD(s)(n) — kgr(s)) (8.26)
where 7 £ Gu(m) 4 0 (m)x(m) + 0 (m)x(m — 1) + 05 (m)x(m — ) + 6(m),
and r(m) are the inverse Laplace transform of 7)(s) and r(s). Feedforward gain
k, =

and k > 0. Strictly proper transfer function D(s) leads to a

1
chm—lbo ’

strictly proper stable

wkD(s)

(s) £ 1T kD) (8.27)

with DC gain C(0) = 1. The selection of D(s) = % yields first order strictly

proper transfer function

C(s) = (8.28)

s + wk

The following norm condition has to be satisfied for £, adaptive control

||G(S)||E1 (Qmax 0+ Omax 1 + Omax 2) <1 (829)
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where

H(s) 2 (sI - An) " Yho, G(s) 2 H(s)(C(s) — 1) (8.30)

The analysis of this £, adaptive control can be seen in [40].

8.4 Simulation

In order to test the proposed adaptive controls under parameter uncertainty, sim-
ulations were carried out in two major parts. The first part is for the 1&I adaptive
control and the second for £ adaptive control. In each part, the simulations are
conducted for several cases of uncertain parameters. The uncertain parameters

Knis and WOB are bounded and belong to the following range

1 < Kanis <10, 5x10* < WOB < 8.9 x 10* (8.31)

with the nominal values chosen to be K,,is = 10 and WOB = 8.9 x 10*, while

a=0.305m, b=0.953m, c¢=1.407m,

d=2m, Ky, =8577 x 10°N . m/rad (8.32)
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are known parameters with exact values. The control input Fj.q(m) is considered

to be bounded by

| Faa(m)| < 10'N (8.33)

The first case of simulation for 1&I adaptive control is conducted with reference
H,cf(m) = 0.1sin(0.05m) + (m/200) and the constant uncertain parameters are

given by

Konis =1, WOB =5 x 10* (8.34)

which are different from the nominal values. As seen in Figure (8.2), the proposed
1&I adaptive control is able to stabilize the system and follow the predefined
reference as expected.

The second case is conducted with reference H,.r(m) = 0.1sin(0.05m) +
(m/200) and random time-varying bounded uncertain parameter K,,;s and WODB
with gaussian distribution. The performance of the controller is presented in Fig-
ure (8.3). It can be seen that the 1&I adaptive control is able to produce acceptable
stabilization performance and maintaining small tracking error.

The last case of I1&I adaptive control simulation uses a non-smooth reference
for the angle of borehole-propagation with respect to the m-axis ¥,.¢(rad) and
random time-varying bounded uncertain parameter K,,;s and WODB with gaus-

sian distribution. As seen in Figure (8.4), the proposed controller is once again
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Figure 8.2: 1&I Adaptive Control (Kyn;s = 1 and WOB =5 x 10%)

maintaining its stability and performance in the presence of unknown and uncer-
tain parameters.
For £, adaptive control, similar cases of simulation are conducted. The se-

lected tuning parameters for this controller satisfying the following norm condition

||G(S)||L1 (Omax() + Omax 1+ Omax 2) = 9.0181 x 10717 <1 (835)

The results of the proposed £; adaptive control can be seen in Figure (8.6-8.8).
The performances of this controller are acceptable, but if the results are compared
with the previous method, the 1&I adaptive control produces better performances
in general.

In terms of magnitude, the control signal produced by 1&I adaptive is smaller
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Figure 8.3: 1&I Adaptive Control (K ;s and WORB are changing)

and smoother than the £; adaptive, hence 1&I adaptive control consumes less
energy than £, adaptive control.

In terms of controller tuning and implementation in the simulation, for EFF-
SZM drilling system in particular, the 1&I adaptive is better because it is easier.
For £, adaptive, several trials need to be done although all the selection of the
tuning parameters satisfy the £;-norm condition. Overall, both the controllers

produce acceptable tracking performance and robust w.r.t parameter uncertainty.
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Figure 8.5: £; Adaptive Control (Ky,;s = 10 and WOB = 8.9 x 10%)
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Figure 8.6: £; Adaptive Control (Kg,s = 1 and WOB =5 x 10)
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8.5 Conclusions

This chapters presents two recent techniques in adaptive control, i.e 1&I adaptive
control and £; adaptive control, for EFFSZM directional drilling system. The
EFFSZM directional drilling system belongs to a class of uncertain system with
internal delay, in which the proposed adaptive controls are required for stabiliza-
tion. Based on simulations, the 1&I adaptive control shows better performance
compared to £; adaptive control in terms of tracking error and energy consump-

tion of the control signal.

8.5.1 Contribution

The main contributions presented in this chapter are

1. Design of 1&I adaptive control for EFFSZM directional drilling system con-

taining internal delay and uncertain parameters.

2. Re-production of £; adaptive control for EFFSZM directional drilling sys-
tem containing internal delay and uncertain parameters for the benchmark-

ing study.
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CHAPTER 9

CONCLUSIONS

9.1 Summary of Contributions

In this thesis, the following problems have been investigated
Chapter 5

1. Design of I&I stabilizing controller for the underactuated quadrotor

UAV.

2. Extension of the work in [1] by including the translational and rota-

tional drag terms.

3. Stability and Robustness analysis of the closed loop system in the pres-

ence of uncertain parameters and exogenous disturbances.
Chapter 6

1. Design of 1&I-based reduced-order observer for the translational dy-

namics of the quadrotor UAV.
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2. Design of the classical Luenberger observer for benchmarking.
Chapter 7
1. Design of I&I adaptive control for the underactuated quadrotor UAV
with unknown and uncertain parameters.
2. Analysis of 1&I adaptive control.
3. Design of £; adaptive control for the underactuated quadrotor UAV
with unknown and uncertain parameters.
Chapter 8
1. Design of 1&I adaptive control for EFFSZM directional drilling system
contains an internal delay and uncertain parameters.

2. Re-production of £, adaptive control for EFFSZM directional drilling
system contains an internal delay and uncertain parameter for the

benchmarking study.

9.2 Concluding Remarks

The work in this thesis can be summarized as the following

1. The design of 1&I stabilizing controller proposed in this thesis can be im-
mediately applied to many mechanical systems. The mathematical develop-
ment of the controller is found to be easier than the backstepping technique

since one does not need to find and solve the Lyapunov function candidate.
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2. The I&I-based reduced order observer is found to be applicable in the esti-
mation of unknown translational velocity. In terms of estimation error, the
performance of this observer is better compared to the classical Luenberger

observer.

3. The design of I&I adaptive controller is a straightforward application for
the UAV system. For the unknown and uncertain parameters, the proposed
adaptive control works perfectly. The requirement to have a faster controller

in the inner loop is satisfied.

4. The 1&I adaptive control is also applicable on a system with an internal de-
lay. The derivation of the controller is straightforward from the I1&I adaptive

control for linearly parametrized plant development.

9.3 Future Work

1. Nonlinear target dynamics for the I&I stabilization may be considered for

acrobatic trajectory tracking control for the quadrotor.

2. The proposed designs may be applied to the real system.
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